Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Folding DNA to create nanoscale shapes and patterns

Identifieur interne : 002E33 ( Main/Exploration ); précédent : 002E32; suivant : 002E34

Folding DNA to create nanoscale shapes and patterns

Auteurs : Paul W. K. Rothemund [États-Unis]

Source :

RBID : ISTEX:E0ADAB4D8D1DD55A78AA4E1772743C203748BAA9

Abstract

‘Bottom-up fabrication’, which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by ‘top-down’ methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide ‘staple strands’ to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).

Url:
DOI: 10.1038/nature04586


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Folding DNA to create nanoscale shapes and patterns</title>
<author>
<name sortKey="Rothemund, Paul W K" sort="Rothemund, Paul W K" uniqKey="Rothemund P" first="Paul W. K." last="Rothemund">Paul W. K. Rothemund</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E0ADAB4D8D1DD55A78AA4E1772743C203748BAA9</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1038/nature04586</idno>
<idno type="url">https://api.istex.fr/ark:/67375/GT4-SS65TN5P-P/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D72</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D72</idno>
<idno type="wicri:Area/Istex/Curation">000D72</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A08</idno>
<idno type="wicri:doubleKey">0028-0836:2006:Rothemund P:folding:dna:to</idno>
<idno type="wicri:Area/Main/Merge">002E63</idno>
<idno type="wicri:Area/Main/Curation">002E33</idno>
<idno type="wicri:Area/Main/Exploration">002E33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Folding DNA to create nanoscale shapes and patterns</title>
<author>
<name sortKey="Rothemund, Paul W K" sort="Rothemund, Paul W K" uniqKey="Rothemund P" first="Paul W. K." last="Rothemund">Paul W. K. Rothemund</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Computer Science and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125</wicri:regionArea>
<wicri:noRegion>California 91125</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Nature</title>
<idno type="ISSN">0028-0836</idno>
<idno type="eISSN">1476-4679</idno>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date when="2006-03-16">2006-03-16</date>
<biblScope unit="vol">440</biblScope>
<biblScope unit="issue">7082</biblScope>
<biblScope unit="page" from="297">297</biblScope>
<biblScope unit="page" to="302">302</biblScope>
<date type="Copyright" when="2006">2006</date>
</imprint>
<idno type="ISSN">0028-0836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">‘Bottom-up fabrication’, which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by ‘top-down’ methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide ‘staple strands’ to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Rothemund, Paul W K" sort="Rothemund, Paul W K" uniqKey="Rothemund P" first="Paul W. K." last="Rothemund">Paul W. K. Rothemund</name>
</noRegion>
<name sortKey="Rothemund, Paul W K" sort="Rothemund, Paul W K" uniqKey="Rothemund P" first="Paul W. K." last="Rothemund">Paul W. K. Rothemund</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E0ADAB4D8D1DD55A78AA4E1772743C203748BAA9
   |texte=   Folding DNA to create nanoscale shapes and patterns
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021